Fluorescent organic molecules

Lei Zhu, Florida State University

July 25, 2023

<u>Sunscreen</u>

- Ultraviolet (UV): 10 400 nm
- UVA: 315 400 nm (soft UV)
- UVB: 280 315 nm (intermediate UV)
- UVC: 100 280 nm (hard UV)
- SPF "sun protection factor"

homosalate (15%)

OH O

oxybenzone (6%)

avobenzone (3%)

octisalate (5%)

"the benefits way outweigh the risks"

Health Sun

Sunscreen: What science says about ingredient safety

Sunscreen is essential for staying protected in the Sun - but recent research suggests some of the ingredients could be improved. BBC Future analyses the evidence.

An exercise of critical thinking

6

What happens when an organic compound absorbs a photon and how would we <u>quantitatively</u> describe it?

Born-Oppenheimer Approximation

Max Born Olivia Newton-John's grandfather

Robert Oppenheimer The guy in the movie

Pictures taken from Wikipedia

"Physics, as we know it, will be over in six months."

- Max Born in 1928

Quark? Neutrino? Black hole?

. . .

. . .

. . .

We (visually) perceive a tiny sliver of the physical world

Indian muntjac deer skin fibroblast cells

<u>A Fluorescent Triazole</u>

Cu(I)-catalyzed azide-alkyne cycloaddition

<u>M. Meldal</u> and coworkers, *J. Org. Chem.* **2002**, *67*, 3057. V. V. Fokin, <u>K. B. Sharpless</u>, and coworkers, *Angew. Chem. Int. Ed.* **2002**, *41*, 2596.

Reroute CuAAC to make iodotriazole

Hein, Fokin, and coworkers, Angew. Chem. Int. Ed. 2009, 48, 8018.

> 50 examples: Brotherton, Clark, and Zhu, J. Org. Chem. **2012**, 77, 6443; Barsoum, Brassard, Deeb, Okashah, Sreenath, Simmons, and Zhu, Synthesis **2013**, 45, 2372.

Aryl-substituted-1,2,3-triazoles

¦×N,

N

Photochemical conversion to indole

The earliest reference that I can find:

"Photochemical Decomposition of 1H-1,2,3-Triazole Derivatives" Burgess and coworkers, J. Am. Chem. Soc. **1968**, 90, 1923-1924.

An early example of triazole photoconversion to indole

Wender and Cooper, Tetrahedron Lett. 1987, 28, 6125-6128.

Light Source

Michael W. Davidson, <u>https://zeiss-campus.magnet.fsu.edu/articles/lightsources/mercuryarc.html</u>

Fluorescent Protein Fusions for Live Cell Imaging

An early example of triazole photoconversion to indole

Wender and Cooper, Tetrahedron Lett. 1987, 28, 6125-6128.

Reaction vessel

Photochemical Cutoff Filters

Google found this

Outcomes of photoconversion

Conditions: irradiation using 390-nm LED for 6 hours. [] = 1.5 mM in acetonitrile.

Two indole isomers

Factors on conversion

Original conditions: irradiation using 390-nm LED for 6 hours. [] = 1.5 mM in acetonitrile.

- Solvent
- Irradiation power and wavelength
- Light penetration (pathlength, turbidity)
- Distance from the light source
- Temperature; Additives

<u>Changing solvent from acetonitrile to</u> dichloromethane

Acetonitrile: 76% in 6 hours DCM: 100% in 30 minutes

Explain the outcomes of photoconversion

Conditions: irradiation using 390-nm LED for 6 hours. [] = 1.5 mM in acetonitrile.

Reactivity

1-arytriazole

diazo intermediate

Conversion = F(\Delta d_{N1-N2})

<u>Selectivity – Cat. #1</u>

<u>Selectivity – Cat. #2</u>

Bochet and coworkers, Eur. J. Org. Chem. 2017, 3197-3210.

<u>Selectivity – Cat. #3</u>

How do We Explain the Selectivity?

Selectivity Cat. #1 and 2

Selectivity Cat. #3

ChemPhysChem

Research Article 🔂 Full Access

Luminescence and Stability of 1,4,5-Triaryl-1,2,3-Triazoles

Brandon D. Nusser, Joseph V. Accardo, Lei Zhu 🔀

First published: 03 July 2023 | https://doi.org/10.1002/cphc.202300209

📜 Find it @ FSU

📜 PDF 🔧 TOOLS < SHARE

Abstract

The fluorescence, phosphorescence, and photochemical properties of di- and triarylsubstituted-1,2,3-triazoles are reported in this work. The ease of synthesis of regioisomers of substituted triazoles enables a systematic study on the correlation between regiochemistry and excited state properties, which include the solvent dependence of fluorescence, energy gap between singlet and triplet emitters, and propensity to photon-triggered transformations. The triazoles that carry electron (e)donor and e-acceptor aryl substituents show high fluorescence quantum yields in weakly

Triazole photoconversion to indole - Summary

Reactivity – the elongation of N1-N2 bond in the S₁

Selectivity – azirine and carbene(s) interconversion in the S_0

